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OUTLINE

I Seasonal Forecasts
I Hidden Markov Models

I Simulations
I Two Year Forecasts
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LARGE-SCALE CLIMATE INFLUENCE ON

BASIN-SCALE HYDROLOGY

How can skillful predictions be made
in the earlier in the winter/spring
season when snowpack data is
unavailable or incomplete?
Large-scale climate variables can be
used as predictors of peak season
streamflow [Grantz et. al. 2005]
[Regonda et. al. 2006].
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ORIGINAL STUDY

Bracken et al. 2010 demonstrated the feasibility of
simultaneously forecast many spatial locations while
preserving spatial dependencies.
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I Predictors are: PDSI, SST, Zonal/Meridional Winds,
Geopotential Height, SWE
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FRAMEWORK

Create “Index”
gauge

Identify large
scale climate

predictors

Generate
ensemble
forecasts

Disaggregation

CDC correlation tool LWP regression

Nonparametric
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SEASONAL FORECAST RESULTS: DROP ONE

CROSS-VALIDATION
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Figure: Drop One Cross-Validation forecast for the I gage on April 1.
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SEASONAL FORECAST RESULTS: DROP ONE

CROSS-VALIDATION

Validation mode apr1 mar1 feb1 jan1 nov1

Leave-one 1.00 1.00 0.91 0.66 0.30
Retroactive 0.85 0.42 0.58 0.46 0.66

Table: Lees Ferry total flow forecast skills
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DISAGGREGATION
Skills generally translate after disaggregation.

Table: Jan 1 RPSS after disaggregation drop-one

April May June July

Colorado River At Glenwood Springs, CO -0.01 0.17 0.44 0.32
Colorado River Near Cameo, CO -0.04 0.15 0.51 0.48

Taylor River Below Taylor Park Reservoir, CO 0.04 0.10 0.27 0.41
Gunnision River Above Blue Mesa Reservoir, CO 0.07 0.34 0.49 0.47

Gunnison River At Crystal Reservoir, CO 0.13 0.26 0.38 0.08
Gunnison River Near Grand Junction, CO 0.06 0.35 0.48 0.38

Dolores River Near Cisco, UT 0.20 0.26 0.34 0.41
Colorado River Near Cisco, UT 0.08 0.17 0.09 0.11

Green R Bel Fontenelle Res, WY 0.23 0.22 0.14 -0.07
Green R. Nr Green River, WY 0.04 0.12 0.09 0.17

Green River Near Greendale, UT 0.17 0.33 0.25 0.17
Yampa River Near Maybell, CO 0.02 0.32 0.40 0.36
Little Snake River Near Lily, CO -0.03 0.33 0.31 0.24

Duchesne River Near Randlett, UT 0.23 0.34 0.24 0.32
White River Near Watson, UT 0.13 0.22 0.37 0.46

Green River At Green River, UT 0.05 0.22 0.17 0.25
San Rafael River Near Green River, UT 0.13 0.33 0.42 0.12

San Juan River Near Archuleta, NM -0.02 0.26 0.16 0.31
San Juan River Near Bluff, UT 0.09 0.31 0.28 0.16
Colorado R At Lees Ferry, AZ 0.17 0.24 0.17 0.35
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2011 FORECASTS

2010 Seasonal Volume Forecast

Apr−July Flow Volume [MAF]
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2011 FORECASTS
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TWO YEAR FORECASTS

1. In the second year, climate/snowpack information is not
available/poor

2. A logical step is to use time series methods, ARMA, KNN,
MC, Time Domain Methods
2.1 These methods provide little or no predictability over

climatology

3. Snow, Climate predictors and seasonal flow timeseries
have very low autocorrelation (LF, 0.26)

4. Goal to make predictions from Apr 1 of the following year
seasonal flow.
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HIDDEN MARKOV MODELS

Pr(Ct|C(t−1)) = Pr(Ct|Ct−1), t = 2, 3, ...

Pr(Xt|X(t−1), C(t)) = Pr(Xt|Ct), t ∈N

30 HMMs: DEFINITION AND PROPERTIES

Figure 2.1, gives a clear indication that the observations are serially de-
pendent. One way of allowing for serial dependence in the observations
is to relax the assumption that the parameter process is serially indepen-
dent. A simple and mathematically convenient way to do so is to assume
that it is a Markov chain. The resulting model for the observations is
called a Poisson–hidden Markov model, a simple example of the class of
models discussed in the rest of this book, namely hidden Markov models
(HMMs).

We shall not give an account here of the (interesting) history of such
models, but two valuable sources of information on HMMs that go far
beyond the scope of this book, and include accounts of the history, are
Ephraim and Merhav (2002) and Cappé, Moulines and Rydén (2005).

2.2 The basics

2.2.1 Definition and notation

X1 X2 X3 X4

C1 C2 C3 C4

Figure 2.2 Directed graph of basic HMM.

A hidden Markov model {Xt : t ∈ N} is a particular kind of
dependent mixture. With X(t) and C(t) representing the histories from
time 1 to time t, one can summarize the simplest model of this kind by:

Pr(Ct | C(t−1)) = Pr(Ct | Ct−1), t = 2, 3, . . . (2.1)

Pr(Xt | X(t−1),C(t)) = Pr(Xt | Ct), t ∈ N. (2.2)

The model consists of two parts: firstly, an unobserved ‘parameter pro-
cess’ {Ct : t = 1, 2, . . . } satisfying the Markov property, and secondly
the ‘state-dependent process’ {Xt : t = 1, 2, . . . } such that, when Ct is
known, the distribution of Xt depends only on the current state Ct and
not on previous states or observations. This structure is represented by
the directed graph in Figure 2.2. If the Markov chain {Ct} has m states,
we call {Xt} an m-state HMM. Although it is the usual terminology in
speech-processing applications, the name ‘hidden Markov model’ is by
no means the only one used for such models or similar ones. For instance,
Ephraim and Merhav (2002) argue for ‘hidden Markov process’, Leroux

© 2009 by Walter Zucchini and Iain MacDonald

1. General time series model
2. Markov process determines ‘hidden’ state, state dictates

component distribution
3. A model that includes discrete states makes intuitive sense

given the concept of climate regimes (such as El Nino)
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HIDDEN MARKOV MODELS

THE BASICS 31

and Puterman (1992) use ‘Markov-dependent mixture’, and others use
‘Markov-switching model’ (especially for models with extra dependencies
at the level of the observations Xt), ‘models subject to Markov regime’,
or ‘Markov mixture model’.

Markov chain

state 1 state 2
δ1 = 0.75 δ2 = 0.25
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Figure 2.3 Process generating the observations in a two-state HMM. The chain
followed the path 2,1,1,1,2,1, as indicated on the left. The corresponding state-
dependent distributions are shown in the middle. The observations are gener-
ated from the corresponding active distributions.

The process generating the observations is demonstrated again in Fig-
ure 2.3, for state-dependent distributions p1 and p2, stationary distribu-

tion δ = (0.75, 0.25), and t.p.m. Γ =

(
0.9 0.1
0.3 0.7

)
. In contrast to the

case of an independent mixture, here the distribution of Ct, the state at
time t, does depend on Ct−1. As is also true of independent mixtures,
there is for each state a different distribution, discrete or continuous.

We now introduce some notation which will cover both discrete- and
continuous-valued observations. In the case of discrete observations we
define, for i = 1, 2, . . . , m,

pi(x) = Pr(Xt = x | Ct = i).

That is, pi is the probability mass function of Xt if the Markov chain
is in state i at time t. The continuous case is treated similarly: there
we define pi to be the probability density function of Xt if the Markov

© 2009 by Walter Zucchini and Iain MacDonald

Flexibility over explicit MC states.
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LEES FERRY HMM

Lees Ferry Total Flow [MAF]
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GLOBAL DECODING
S
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HMM RESULTS (1984)
Climatology, 10%; HMM(2), 14%
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HIDDEN MARKOV MODELS FOR SIMULATION
I HMMs are also useful for simulation (used in risk

analysis).
I Alternative to AR simulations or
I Can we capture longer period variability?
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SIMULATED SPELL LENGTHS
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WAVELET SPECTRUM
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SIMULATION STATISTICS
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CONCLUSIONS

I Skillful single year seasonal forecasts at all natural flow
nodes starting on Nov1

I Second year forecasts (via HMMs) can be made starting on
Apr 1 with overall positive skill.

I HMMs are also useful for simulation.
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